Journal clubs of working memory. Papers are arranged alphabetically by author’s last name.

Reviews

Adam, K.C.S., Rademaker, R.L., and Serences, J.T. Evidence for, and challenges to, sensory recruitment models of visual working memory. [PDF]

Buschman, T. J. (2021). Balancing Flexibility and Interference in Working Memory. Annual Review of Vision Science, 7(1), 1–22. [PDF]

Christophel, T. B., Klink, P. C., Spitzer, B., Roelfsema, P. R. & Haynes, J.-D. (2017). The Distributed Nature of Working Memory. Trends in Cognitive Sciences, 21(2), 111–124. [PDF]

Curtis, C. E. & D’Esposito, M. (2003). Persistent activity in the prefrontal cortex during working memory. Trends in Cognitive Sciences, 7(9), 415–423. [PDF]

Curtis, C. E. & Sprague, T. C. (2021). Persistent Activity During Working Memory From Front to Back. Frontiers in Neural Circuits, 15, 696060. [PDF]

D’Esposito, M., & Postle, B. R. (2015). The cognitive neuroscience of working memory. Annual Review of Psychology, 66, 115-142. [PDF]

Masse, N. Y., Rosen, M. C. & Freedman, D. J. (2020). Reevaluating the Role of Persistent Neural Activity in Short-Term Memory. Trends in Cognitive Sciences, 24(3), 242–258. [PDF]

Miller, E. K., Lundqvist, M. & Bastos, A. M. (2018). Working Memory 2.0. Neuron, 100(2), 463–475. [PDF]

Mongillo, G., Barak, O. & Tsodyks, M. (2008). Synaptic Theory of Working Memory. Science, 319(5869), 1543–1546. [PDF]

Murray, J. D., Bernacchia, A., Roy, N. A., Constantinidis, C., Romo, R. & Wang, X.-J. (2017). Stable population coding for working memory coexists with heterogeneous neural dynamics in prefrontal cortex. Proceedings of the National Academy of Sciences, 114(2), 394–399. [PDF]

Myers, N. E., Stokes, M. G. & Nobre, A. C. (2017). Prioritizing Information during Working Memory: Beyond Sustained Internal Attention. Trends in Cognitive Sciences, 21(6), 449–461. [PDF]

Nobre, A. C., & Stokes, M. G. (2019). Premembering experience: A hierarchy of time-scales for proactive attention. Neuron, 104(1), 132-146. [PDF]

Oberauer, K., Lewandowsky, S., Awh, E., Brown, G. D. A., Conway, A., Cowan, N., Donkin, C., Farrell, S., Hitch, G. J., Hurlstone, M. J., Ma, W. J., Morey, C. C., Nee, D. E., Schweppe, J., Vergauwe, E. & Ward, G. (2018). Benchmarks for Models of Short-Term and Working Memory. Psychological Bulletin, 144(9), 885–958. [PDF]

Serences, J. (2016). Neural mechanisms of information storage in visual short-term memory. Vision Research. [PDF]

Spaak, E., Watanabe, K., Funahashi, S. & Stokes, M. G. (2017). Stable and Dynamic Coding for Working Memory in Primate Prefrontal Cortex. The Journal of Neuroscience, 37(27), 6503–6516. [PDF]

Stokes, M. G. (2015). ‘Activity-silent’ working memory in prefrontal cortex: a dynamic coding framework. Trends in Cognitive Sciences, 19(7), 394–405. [PDF]

Sreenivasan KK, Curtis CE, D’Esposito M (2014) Revisiting the role of persistent neural activity during working memory. Trends in Cognitive Sciences 18, 82-89. [PDF]

Sreenivasan, K. K. & D’Esposito, M. (2019). The what, where and how of delay activity. Nature Reviews Neuroscience, 20(8), 466–481. [PDF]

Kragel, J. E., & Voss, J. L. (2021). Looking for the neural basis of memory. Trends in Cognitive Sciences. [PDF]

Pasternak, T. & Greenlee, M. W. (2005). Working memory in primate sensory systems. Nature Reviews Neuroscience, 6(2), 97–107. [PDF]

Ritvo, V. J., Turk-Browne, N. B., & Norman, K. A. (2019). Nonmonotonic plasticity: how memory retrieval drives learning. Trends in Cognitive Sciences, 23(9), 726-742. [PDF]

Wang, X.-J. (2001). Synaptic reverberation underlying mnemonic persistent activity. Trends in Neurosciences, 24(8), 455–463. [PDF]

Wang, X. J. (2021). 50 years of mnemonic persistent activity: quo vadis?. Trends in Neurosciences. [PDF]

Yonelinas, A. P. (2013). The hippocampus supports high-resolution binding in the service of perception, working memory and long-term memory. Behavioural Brain Research, 254, 34–44. [PDF]